PHOTOSYNTHETIC MICROORGANISMS AS SOURCE OF ANTIOXIDANT AND ANTIBACTERIAL BIOACTIVE COMPOUNDS OF INTEREST IN THE FOOD INDUSTRY

Milena Fernandes da Silva, Yanara Alessandra Santana Moura, Ana Lúcia Figueiredo Porto, Raquel Pedrosa Bezerra

Resumo


Bioactive compounds from microalgae and cyanobacteria have been frequently investigated as food preservatives due to their various biotechnological activities. Therefore, this study aimed to evaluate the antimicrobial and antioxidant activities of the aqueous and ethanolic extracts from Dunaliella tertiolecta, Tetradesmus obliquus, and Chlorella vulgaris microalgae and Arthrospira platensis cyanobacteria. The extracts were obtained through the sonication method and the antioxidant activity was determined by ABTS and DPPH methods, whereas antimicrobial activity was evaluated by microdilution assay. In general, ethanolic extracts of all microalgae showed higher antioxidant activity compared to aqueous extracts, especially using ABTS method. All bacteria exhibited higher resistance using the aqueous extracts. Specifically, the gram-negative Pseudomonas aeruginosa was the most susceptible pathogen and was inhibited by all microalgae. The highest antioxidant and antimicrobial activities were obtained by the ethanolic extract from Arthrospira platensis. These data show that ethanolic extract from Arthrospira platensis may be a potential source of antioxidant and antimicrobial compounds with food preservative properties.


Texto completo:

PDF PDF

Referências


ABEBE, G. M. The Role of Bacterial Biofilm in Antibiotic Resistance and Food Contamination. International Journal of Microbiology, v. 2020, p. 1–10, 2020. Disponível em: https://doi.org/10.1155/2020/1705814

AL-SHABIB, N. A.; HUSAIN, F. M.; AHMAD, I.; KHAN, M. S.; KHAN, R. A.; KHAN, J. M. Rutin inhibits mono and multi-species biofilm formation by foodborne drug resistant Escherichia coli and Staphylococcus aureus. Food Control, v. 79, 2017. Disponível em: https://doi.org/10.1016/j.foodcont.2017.03.004

ALLEN, M. M.; STANIER, R. Y. Growth and Division of Some Unicellular Blue-green Algae. Journal of General Microbiology, v. 51, n. 2, 1968. Disponível em: https://doi.org/10.1099/00221287-51-2-199

ALSENANI, F.; TUPALLY, K. R.; CHUA, E. T.; ELTANAHY, E.; ALSUFYANI, H.; PAREKH, H. S.; SCHENK, P. M. Evaluation of microalgae and cyanobacteria as potential sources of antimicrobial compounds. Saudi Pharmaceutical Journal, v. 28, n. 12, 2020. Disponível em: https://doi.org/10.1016/j.jsps.2020.11.010

ALWATHNANI, H.; PERVEEN, K. Antibacterial activity and morphological changes in human pathogenic bacteria caused by Chlorella vulgaris extracts. Biomedical Research, v. 28, n. 4, 2017.

ARNAO, M. B. Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends in Food Science & Technology, v. 11, n. 11, p. 419–421, 2000. Disponível em: https://doi.org/10.1016/S0924-2244(01)00027-9

AYDI, S. sassi; AYDI, S.; BEN ABDALLAH KOLSI, R.; HADDEJI, N.; RAHMANI, R.; KTARI, N.; BOUAJILA, J. CO2 enrichment: Enhancing antioxidant, antibacterial and anticancer activities in Arthrospira platensis. Food Bioscience, v. 35, 2020. Disponível em: https://doi.org/10.1016/j.fbio.2020.100575

BEN ATITALLAH, A.; BARKALLAH, M.; HENTATI, F.; DAMMAK, M.; BEN HLIMA, H.; FENDRI, I.; ATTIA, H.; MICHAUD, P.; ABDELKAFI, S. Physicochemical, textural, antioxidant and sensory characteristics of microalgae-fortified canned fish burgers prepared from minced flesh of common barbel (Barbus barbus). Food Bioscience, v. 30, 2019. Disponível em: https://doi.org/10.1016/j.fbio.2019.100417

BOSS, R.; OVERESCH, G.; BAUMGARTNER, A. Antimicrobial Resistance of Escherichia coli, Enterococci, Pseudomonas aeruginosa, and Staphylococcus aureus from Raw Fish and Seafood Imported into Switzerland. Journal of Food Protection, v. 79, n. 7, 2016. Disponível em: https://doi.org/10.4315/0362-028X.JFP-15-463

BRAND-WILLIAMS, W.; CUVELIER, M. E.; BERSET, C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, v. 28, n. 1, 1995. Disponível em: https://doi.org/10.1016/S0023-6438(95)80008-5

CHAN, C.-H.; SEE, T.-Y.; YUSOFF, R.; NGOH, G.-C.; KOW, K.-W. Extraction of bioactives from Orthosiphon stamineus using microwave and ultrasound-assisted techniques: Process optimization and scale up. Food Chemistry, v. 221, 2017. Disponível em: https://doi.org/10.1016/j.foodchem.2016.11.016

CHATATIKUN, M.; CHIABCHALARD, A. Thai plants with high antioxidant levels, free radical scavenging activity, anti-tyrosinase and anti-collagenase activity. BMC Complementary and Alternative Medicine, v. 17, n. 1, p. 487, 2017. Disponível em: https://doi.org/10.1186/s12906-017-1994-7

CHEN, M.; TANG, H.; MA, H.; HOLLAND, T. C.; NG, K. Y. S.; SALLEY, S. O. Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource Technology, v. 102, n. 2, 2011. Disponível em: https://doi.org/10.1016/j.biortech.2010.09.062

CKD, B.; G, N.; D, A.; A, S.; KONAN K, F.; K, D.; B, B.; DK, M.; D, M. Prevalence and Antibiotic Resistance of Pseudomonas aeruginosa Isolated from Bovine Meat, Fresh Fish and Smoked Fish. Archives of Clinical Microbiology, v. 08, n. 03, 2017. Disponível em: https://doi.org/10.4172/1989-8436.100040

COULOMBIER, N.; NICOLAU, E.; LE DÉAN, L.; ANTHEAUME, C.; JAUFFRAIS, T.; LEBOUVIER, N. Impact of Light Intensity on Antioxidant Activity of Tropical Microalgae. Marine Drugs, v. 18, n. 2, 2020. Disponível em: https://doi.org/10.3390/md18020122

DE MELO, R. G.; DE ANDRADE, A. F.; BEZERRA, R. P.; VIANA MARQUES, D. de A.; DA SILVA, V. A.; PAZ, S. T.; DE LIMA FILHO, J. L.; PORTO, A. L. F. Hydrogel-based Chlorella vulgaris extracts: a new topical formulation for wound healing treatment. Journal of Applied Phycology, v. 31, n. 6, 2019. Disponível em: https://doi.org/10.1007/s10811-019-01837-2

DUDA-CHODAK, A. Impact of water extracts of Spirulina (WES) on bacteria, yeasts and molds. Acta Scientiarum Polonorum Technologia Alimentaria, v. 12, n. 1, p. 33–39, 2013.

DUDONNÉ, S.; VITRAC, X.; COUTIÈRE, P.; WOILLEZ, M.; MÉRILLON, J.-M. Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. Journal of Agricultural and Food Chemistry, v. 57, n. 5, p. 1768–1774, 2009. Disponível em: https://doi.org/10.1021/jf803011r

EL-FAYOUMY, E. A.; SHANAB, S. M. M.; GABALLA, H. S.; TANTAWY, M. A.; SHALABY, E. A. Evaluation of antioxidant and anticancer activity of crude extract and different fractions of Chlorella vulgaris axenic culture grown under various concentrations of copper ions. BMC Complementary Medicine and Therapies, v. 21, n. 1, 2021. Disponível em: https://doi.org/10.1186/s12906-020-03194-x

EL-SABER BATIHA, G. et al. Application of natural antimicrobials in food preservation: Recent views. Food Control, v. 126, p. 108066, 2021. Disponível em: https://doi.org/10.1016/j.foodcont.2021.108066

ELSHOUNY, W. A. E.-F.; EL-SHEEKH, M. M.; SABAE, S. Z.; KHALIL, M. A.; BADR, H. M. ANTIMICROBIAL ACTIVITY of SPIRULINA PLATENSIS AGAINST AQUATIC BACTERIAL ISOLATES. Journal of Microbiology, Biotechnology and Food Sciences, v. 6, n. 5, 2017. Disponível em: https://doi.org/10.15414/jmbfs.2017.6.5.1203-1208

ESQUIVEL-HERNÁNDEZ, D. A.; RODRÍGUEZ-RODRÍGUEZ, J.; ROSTRO-ALANIS, M.; CUÉLLAR-BERMÚDEZ, S. P.; MANCERA-ANDRADE, E. I.; NÚÑEZ-ECHEVARRÍA, J. E.; GARCÍA-PÉREZ, J. S.; CHANDRA, R.; PARRA-SALDÍVAR, R. Advancement of green process through microwave-assisted extraction of bioactive metabolites from Arthrospira Platensis and bioactivity evaluation. Bioresource Technology, v. 224, 2017. Disponível em: https://doi.org/10.1016/j.biortech.2016.10.061

FELLER, R.; MATOS, Â. P.; MAZZUTTI, S.; MOECKE, E. H. S.; TRES, M. V.; DERNER, R. B.; OLIVEIRA, J. V.; JUNIOR, A. F. Polyunsaturated ω-3 and ω-6 fatty acids, total carotenoids and antioxidant activity of three marine microalgae extracts obtained by supercritical CO2 and subcritical n-butane. The Journal of Supercritical Fluids, v. 133, 2018. Disponível em: https://doi.org/10.1016/j.supflu.2017.11.015

FLOEGEL, A.; KIM, D.-O.; CHUNG, S.-J.; KOO, S. I.; CHUN, O. K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. Journal of Food Composition and Analysis, v. 24, n. 7, p. 1043–1048, 2011. Disponível em: https://doi.org/10.1016/j.jfca.2011.01.008

FUKUMOTO, L. R.; MAZZA, G. Assessing Antioxidant and Prooxidant Activities of Phenolic Compounds †. Journal of Agricultural and Food Chemistry, v. 48, n. 8, 2000. Disponível em: https://doi.org/10.1021/jf000220w

GU, X.; SUN, Y.; TU, K.; DONG, Q.; PAN, L. Predicting the growth situation of Pseudomonas aeruginosa on agar plates and meat stuffs using gas sensors. Scientific Reports, v. 6, n. 1, 2016. Disponível em: https://doi.org/10.1038/srep38721

GUGALA, N.; VU, D.; PARKINS, M. D.; TURNER, R. J. Specificity in the Susceptibilities of Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus Clinical Isolates to Six Metal Antimicrobials. Antibiotics, v. 8, n. 2, 2019. Disponível em: https://doi.org/10.3390/antibiotics8020051

GUILLARD, R. R. L.; RYTHER, J. H. Studies on Marine Planktonic Diatoms I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. , v. 8, p. 229–239, 1962.

GUTIÉRREZ-DEL-RÍO, I.; FERNÁNDEZ, J.; LOMBÓ, F. Plant nutraceuticals as antimicrobial agents in food preservation: terpenoids, polyphenols and thiols. International Journal of Antimicrobial Agents, v. 52, n. 3, p. 309–315, 2018. Disponível em: https://doi.org/10.1016/j.ijantimicag.2018.04.024

HERRERO, M.; IBÁÑEZ, E.; CIFUENTES, A.; REGLERO, G.; SANTOYO, S. Dunaliella salina Microalga Pressurized Liquid Extracts as Potential Antimicrobials. Journal of Food Protection, v. 69, n. 10, 2006. Disponível em: https://doi.org/10.4315/0362-028X-69.10.2471

IBRAHIM, K.; RAMLI, R.; YUSOF, H.; RASHID, A. H. A. Antimicrobial Property of Water and Ethanol Extract Chlorella vulgaris: A Value-Added Advantage for a New Wound Dressing Material. International Medical Journal , v. 22, n. 5, p. 399–401, 2015.

IGLESIAS, M. J. et al. NMR characterization and evaluation of antibacterial and antiobiofilm activity of organic extracts from stationary phase batch cultures of five marine microalgae (Dunaliella sp., D. salina, Chaetoceros calcitrans, C. gracilis and Tisochrysis lutea). Phytochemistry, v. 164, 2019. Disponível em: https://doi.org/10.1016/j.phytochem.2019.05.001

ISMAIEL, M. M. S.; EL-AYOUTY, Y. M.; PIERCEY-NORMORE, M. Role of pH on antioxidants production by Spirulina ( Arthrospira ) platensis. Brazilian Journal of Microbiology, v. 47, n. 2, 2016. Disponível em: https://doi.org/10.1016/j.bjm.2016.01.003

JEREZ-MARTEL, I.; GARCÍA-POZA, S.; RODRÍGUEZ-MARTEL, G.; RICO, M.; AFONSO-OLIVARES, C.; GÓMEZ-PINCHETTI, J. L. Phenolic Profile and Antioxidant Activity of Crude Extracts from Microalgae and Cyanobacteria Strains. Journal of Food Quality, v. 2017, 2017. Disponível em: https://doi.org/10.1155/2017/2924508

KOCBERBER KILIC, N.; ERDEM, K.; DONMEZ, G. Bioactive Compounds Produced by Dunaliella species, Antimicrobial Effects and Optimization of the Efficiency. Turkish Journal of Fisheries and Aquatic Sciences, v. 19, n. 11, 2019. Disponível em: https://doi.org/10.4194/1303-2712-v19_11_04

LUCERA, A.; COSTA, C.; CONTE, A.; DEL NOBILE, M. A. Food applications of natural antimicrobial compounds. Frontiers in Microbiology, v. 3, 2012. Disponível em: https://doi.org/10.3389/fmicb.2012.00287

MAADANE, A.; MERGHOUB, N.; AINANE, T.; EL ARROUSSI, H.; BENHIMA, R.; AMZAZI, S.; BAKRI, Y.; WAHBY, I. Antioxidant activity of some Moroccan marine microalgae: Pufa profiles, carotenoids and phenolic content. Journal of Biotechnology, v. 215, 2015. Disponível em: https://doi.org/10.1016/j.jbiotec.2015.06.400

MADDOX, C. E.; LAUR, L. M.; TIAN, L. Antibacterial Activity of Phenolic Compounds Against the Phytopathogen Xylella fastidiosa. Current Microbiology, v. 60, n. 1, 2010. Disponível em: https://doi.org/10.1007/s00284-009-9501-0

MARREZ, D. A.; NAGUIB, M. M.; SULTAN, Y. Y.; HIGAZY, A. M. Antimicrobial and anticancer activities of Scenedesmus obliquus metabolites. Heliyon, v. 5, n. 3, 2019. Disponível em: https://doi.org/10.1016/j.heliyon.2019.e01404

MARTÍNEZ SANCHO, M.; JIMÉNEZ CASTILLO, J. .; EL YOUSFI, F. Photoautotrophic consumption of phosphorus by Scenedesmus obliquus in a continuous culture. Influence of light intensity. Process Biochemistry, v. 34, n. 8, 1999. Disponível em: https://doi.org/10.1016/S0032-9592(99)00006-0

MENDIOLA, J. A.; JAIME, L.; SANTOYO, S.; REGLERO, G.; CIFUENTES, A.; IBAÑEZ, E.; SEÑORÁNS, F. J. Screening of functional compounds in supercritical fluid extracts from Spirulina platensis. Food Chemistry, v. 102, n. 4, 2007. Disponível em: https://doi.org/10.1016/j.foodchem.2006.06.068

MIAZEK, K.; KRATKY, L.; SULC, R.; JIROUT, T.; AGUEDO, M.; RICHEL, A.; GOFFIN, D. Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review. International Journal of Molecular Sciences, v. 18, n. 7, 2017. Disponível em: https://doi.org/10.3390/ijms18071429

MOHITE, Y. S.; SHRIVASTAVA, N. D.; SAHU, D. G. Antimicrobial Activity of C- Phycocyanin from Arthrospira Platensis Isolated From Extreme Haloalkaline Environment Of Lonar Lake. Journal of Environmental Science, Toxicology and Food Technology, v. 1, n. 4, p. 40–45, 2015.

MONTEIRO, M.; SANTOS, R. A.; IGLESIAS, P.; COUTO, A.; SERRA, C. R.; GOUVINHAS, I.; BARROS, A.; OLIVA-TELES, A.; ENES, P.; DÍAZ-ROSALES, P. Effect of extraction method and solvent system on the phenolic content and antioxidant activity of selected macro- and microalgae extracts. Journal of Applied Phycology, v. 32, n. 1, 2020. Disponível em: https://doi.org/10.1007/s10811-019-01927-1

NETANEL LIBERMAN, G.; OCHBAUM, G.; BITTON, R.; (MALIS) ARAD, S. Antimicrobial hydrogels composed of chitosan and sulfated polysaccharides of red microalgae. Polymer, v. 215, 2021. Disponível em: https://doi.org/10.1016/j.polymer.2020.123353

PAN-UTAI, W.; IAMTHAM, S. Extraction, purification and antioxidant activity of phycobiliprotein from Arthrospira platensis. Process Biochemistry, v. 82, 2019. Disponível em: https://doi.org/10.1016/j.procbio.2019.04.014

PENHA, C. B.; BONIN, E.; DA SILVA, A. F.; HIOKA, N.; ZANQUETA, É. B.; NAKAMURA, T. U.; DE ABREU FILHO, B. A.; CAMPANERUT-SÁ, P. A. Z.; MIKCHA, J. M. G. Photodynamic inactivation of foodborne and food spoilage bacteria by curcumin. LWT - Food Science and Technology, v. 76, 2017. Disponível em: https://doi.org/10.1016/j.lwt.2016.07.037

PISOSCHI, A. M.; POP, A.; GEORGESCU, C.; TURCUŞ, V.; OLAH, N. K.; MATHE, E. An overview of natural antimicrobials role in food. European Journal of Medicinal Chemistry, v. 143, p. 922–935, 2018. Disponível em: https://doi.org/10.1016/j.ejmech.2017.11.095

PLAZZOTTA, S.; MANZOCCO, L. Effect of ultrasounds and high pressure homogenization on the extraction of antioxidant polyphenols from lettuce waste. Innovative Food Science & Emerging Technologies, v. 50, 2018. Disponível em: https://doi.org/10.1016/j.ifset.2018.10.004

POIREL, L.; MADEC, J.-Y.; LUPO, A.; SCHINK, A.-K.; KIEFFER, N.; NORDMANN, P.; SCHWARZ, S. Antimicrobial Resistance in Escherichia coli. Microbiology Spectrum, v. 6, n. 4, 2018. Disponível em: https://doi.org/10.1128/microbiolspec.ARBA-0026-2017

RE, R.; PELLEGRINI, N.; PROTEGGENTE, A.; PANNALA, A.; YANG, M.; RICE-EVANS, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, v. 26, n. 9–10, 1999. Disponível em: https://doi.org/10.1016/S0891-5849(98)00315-3

SANTHAKUMARAN, P.; AYYAPPAN, S. M.; RAY, J. G. Nutraceutical applications of twenty-five species of rapid-growing green-microalgae as indicated by their antibacterial, antioxidant and mineral content. Algal Research, v. 47, 2020. Disponível em: https://doi.org/10.1016/j.algal.2020.101878

SATHASIVAM, R.; RADHAKRISHNAN, R.; HASHEM, A.; ABD_ALLAH, E. F. Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, v. 26, n. 4, 2019. Disponível em: https://doi.org/10.1016/j.sjbs.2017.11.003

SCHLOSSER, U. G. Sammlung von Algenkulturen. . Berichte der Deutschen Botanischen Gesellschaft, v. 95, p. 181–276, 1982.

SILVA-JÚNIOR, J. N.; DE AGUIAR, E. M.; MOTA, R. A.; BEZERRA, R. P.; PORTO, A. L. F.; HERCULANO, P. N.; MARQUES, D. A. V. Antimicrobial Activity of Photosynthetic Microorganisms Biomass Extract against Bacterial Isolates Causing Mastitis. Journal of Dairy & Veterinary Sciences, v. 10, n. 3, 2019.

STEIN, A. J. Handbook of phycological methods. Culture Methods and growth measurements. Cambridge at the University Press, London, New York: [s. n.], 1973.

TOMIYAMA, K.; MUKAI, Y.; SAITO, M.; WATANABE, K.; KUMADA, H.; NIHEI, T.; HAMADA, N.; TERANAKA, T. Antibacterial Action of a Condensed Tannin Extracted from Astringent Persimmon as a Component of Food Addictive Pancil PS-M on Oral Polymicrobial Biofilms. BioMed Research International, v. 2016, 2016. Disponível em: https://doi.org/10.1155/2016/5730748

USMAN, U. Z.; BAKAR, A. B. A.; MOHAMED, M. Phytochemical screening and comparison of antioxidant activity of water and ethanol extract propolis from malaysia. International Journal of Pharmacy and Pharmaceutical Sciences , v. 7, n. 5, 2016.

WANG, C.; LI, H.; WANG, Q.; WEI, P. Effect of pH on growth and lipid content of Chlorella vulgaris cultured in biogas slurry. Sheng Wu Gong Cheng Xue Bao, v. 26, n. 8, p. 1074–1079, 2010.

WANG, Q. W.; HAN, N.; HUO, S.; BAO, Y. Antimicrobial Activities of Two Iridoid Glycosides from Physochlaina physaloides. Chemistry of Natural Compounds, n. 54, p. 680–683, 2018.

WORLD ORGANIZATION HEALTH. Foodborne diseases. [s. l.], 2021.

YU, M.; CHEN, M.; GUI, J.; HUANG, S.; LIU, Y.; SHENTU, H.; HE, J.; FANG, Z.; WANG, W.; ZHANG, Y. Preparation of Chlorella vulgaris polysaccharides and their antioxidant activity in vitro and in vivo. International Journal of Biological Macromolecules, v. 137, 2019. Disponível em: https://doi.org/10.1016/j.ijbiomac.2019.06.222

ZIELINSKI, D.; FRACZYK, J.; DEBOWSKI, M.; ZIELINSKI, M.; KAMINSKI, Z. J.; KREGIEL, D.; JACOB, C.; KOLESINSKA, B. Biological Activity of Hydrophilic Extract of Chlorella vulgaris Grown on Post-Fermentation Leachate from a Biogas Plant Supplied with Stillage and Maize Silage. Molecules, v. 25, n. 8, 2020. Disponível em: https://doi.org/10.3390/molecules25081790




DOI: https://doi.org/10.22408/reva8020231069e-8053

Métricas do artigo

Carregando Métricas ...

Metrics powered by PLOS ALM

Apontamentos

  • Não há apontamentos.




Flag Counter

Revista Valore 
ISSN: 2525-9008