MODELING VERTICAL MOBILITY OF P IN REGOSOLS OF THE BRAZILIAN SEMIARID REGION: LEACH COLUMN EXPERIMENT

Kalline de Almeida Alves Carneiro, Vânia da Silva Fraga, Marcus Metri Correa, Antônio Celso Dantas Antonino, Lívia Previatello da Silva, Letícia Moro, Manuella Virginia Salgueiro Gondim, Bruno de Oliveira Dias, Jaime Wilson Vargas de Mello, Rodrigo Santana Macedo, Jhony Vendruscolo

Resumo


Phosphorus (P) mobility can be high in sandy soils in tropical regions due to its high proportion of macropores, low levels of Fe and/or Al oxides, and low natural levels of organic matter. The aim of this study was to verify if the fit with convection-dispersion model (CDE) is adequate to analyze P vertical mobility in Regosols from the Brazilian semiarid region. Leaching columns were packed with two soils, fertilized with cattle manure. The columns were prepared based on the hydrodispersive parameters of the modeling with potassium bromide (KBr) and saturated flow. Soil samples were saturated with calcium chloride (CaCl2) and potassium chloride (KCl), both 0.001 mol L-1, and a pulse of 0.6 mmol L-1 of P. The hydrodispersive parameters (inverse method) were estimated using the CDE (CXTFIT). The soil samples packed in the columns, the delay factors (R) were around 1, the dispersivity values (λ) were very close, and the Péclet numbers (Pe) were greater than 10. In the P pulse transport assay, Pleached contents were on average 270.8 mg L-1, and it was observed that most of Pleached were translocated with 20 Vp, from 40 Vp the relationship between concentration and volume remains constant; hydrodynamic dispersion coefficients (D) ranged from 22.85 to 72.50 cm2 h-1, R ranged from 2.36 to 5.23, Damkohler number (ω) values were less than 1, and Pe ranged from 0.76 to 2.40. The adjustment with the CDE was efficient to demonstrate the vertical mobility of P in Regosols of the Brazilian semiarid region.


Texto completo:

PDF

Referências


Alvares CA, Stape JL, Sentelhas PC, Gonçalves FLM, Sparovek G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift. 2013; v. 22(6): 711-728, doi: 10.1127/0941-2948/2013/0507

Azevedo RP, Salcedo IH, Lima PA, Fraga VS, Lana RMQ. Mobility of phosphorus from organic and inorganic source materials in a sandy soil. International Journal of Recycling of Organic Waste in Agriculture. 2018; v.7: 153-163, doi: 10.1007/s40093-018-0201-2

Basso JB, Kiang CH. Retardamento e dispersão aniônica de cobre, potássio e cloreto em solos residuais do subgrupo Itararé no estado de São Paulo. Águas Subterrâneas. 2017; v.31(1): 117-133, doi: 10.14295/ras.v31i1.28638

Barrow NJ. The effects of pH on phosphate uptake from the soil. Plant and Soil. 2017; v.410: 401-410, doi: 10.1007/s11104-016-3008-9

Bergström L, Kichmann H, Djodjic F, Kyllmar K, Ulén B, Liu J, Anderson H, Aronsson H, Börjesson G, Kynkäänniemi P, Svanbäck A, Villa, A. Turnover and Losses of Phosphorus in Swedish Agricultural Soils: Long-Term Changes, Leaching Trends, and Mitigation Measures. Journal of Environmental Quality. 2015; v.44: 512-523, doi: 10.2134/jeq2014.04.0165

Borges Júnior JCF, Ferreira A. Equações e programa computacional para cálculo do transporte de solutos do solo. Revista Brasileira de Engenharia Agrícola e Ambiental. 2006; v.10(3): 604–611, doi: 10.1590/S1415-43662006000300010

Carmo AI, Antonino ACD, Netto AM, Corrêa MM. Caracterização hidrodispersiva de dois solos da região irrigada do Vale do São Francisco. Revista Brasileira de Engenharia Agrícola e Ambiental. 2010; v.14(7): 698–704, doi: 10.1590/S1415-43662010000700003

Coats KH, Smith BD. Dead-end pore volume and dispersion in porous media. Society of Petroleum Engineers. 1964; v.4: 73-84, doi: 10.1016/j.jhydrol.2008.08.007

Fink JR, Inda AV, Bavaresco J, Barrón V, Torrent J, Bayer C. Adsorption and desorption of phosphorus in subtropical soils as afected by management system and mineralogy. Soil and Tillage Research. 2016; v.155: 62-68, doi: 10.1016/j.still.2015.07.017

Galvão SRS, Salcedo IH, Oliveira FF. Acumulação de nutrientes em solos arenosos adubados com ester-co bovino. Pesquisa Agropecuária Brasileira. 2008; v.43(1): 99-105, doi: 38154/1/43n01a13

IUSS International Union of Soil Sciences Working Group WRB. World Reference Base for Soil Resou-rces. International soil classification system for naming soils and creating legends for soil maps. 2022. [cited 2023 Mar 20] Available from: https://eurasian-soil-portal.info/wp-content/uploads/2022/07/wrb_fourth_edition_2022-3.pdf

Jadoski SO, Saito LR, Prado C, Lopes EC, Sales LLSR. Characteristics of the Nitrate leaching in inten-sive farming areas. Revista Brasileira de Tecnologia Aplicada nas Ciências Agrárias. 2010; v.3(1): 193-200, doi: 10.5777/paet.v3i1.1008

Kang J, Amoozegar A, Hesterberg D, Osmond DL. Phosphorus leaching in a sandy soil as affected by organic and inorganic fertilizer sources. Geoderma. 2011; v.161: 194-201, doi: 10.1016/j.geoderma.2010.12.019

Lee Y, Oa SW. Nutrient transport characteristics of livestock manure in a farmland. International Jour-nal of Recycling of Organic Waste in Agriculture. 2013; v.2(1): 1-6, doi: 10.1186/2251-7715-2-1

Martinez MA, Ramos VBN, Mato SAT, Oliveira RA, Costa SN. Influência da competição catiônica nos valores de fator de retardamento e coeficiente de dispersão-difusão de zinco e cobre no solo. Revista brasileira de engenharia agrícola e ambiental. 2001; v.5(2): 211-215, doi: 10.1590/S1415-43662001000200006

Menezes RSC, Salcedo IH. Mineralização de N após incorporação de adubos orgânicos em um Neossolo Regolítico cultivado com milho. Revista Brasileira de Engenharia Agrícola e Ambiental. 2007; v.11(4): 361-367, doi: 10.1590/S1415-43662007000400003

Milfont MLB, Antonino ACD, Martins JMF, Netto A M, Correa MM. Caracterização hidrodispersiva de dois solos do vale do rio São Francisco. Revista Brasileira de Ciências Agrárias. 2006; v.1: 81-87, doi: 10.5039/agraria.v1i1a186

Moreira DA, Martinez MA, Souza JA, Matos AT, Reis C, Barros FM. Fatores de retardamento e coefici-entes de dispersão-difusão de metais pesados em resíduos de construção civil e demolição. Revista Am-biente & Água. 2010; v.5(2): 77-86, doi: 10.4136/1980-993

Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural water. Analytica Chimica Acta. 1962; v.27: 31-36, doi: 10.1016/S0003-2670(00)88444-5

Nielsen DR, Biggard JW. Miscible displacement. 3. Theorectical considerations. Soil Science Society of America Proceedings. 1962; v.26(3): 216-221, doi: 10.2136/sssaj1962.03615995002600030010x

Oliveira EMM, Ruiz HÁ, Ferreira PA, Alvarez VVH, Borges Júnior JCF. Fatores de retardamento e coe-ficientes de dispersão-difusão de fosfato, potássio e amônio em solos de Minas Gerais. Revista Brasilei-ra de Engenharia Agrícola e Ambiental. 2004; v.8: 196-203, doi: 10.1590/S1415-43662004000200006

Oliveira LFC, Nogueira JG, Frizzarim SS, Fia R, Freitas JS, Fia FRL. Sorção e mobilidade do lítio em solos de áreas de disposição final de resíduos sólidos urbanos. Revista de Engenharia Sanitária e Am-biental. 2013; v.18(2): 139-148, doi: 10.1590/S1413-41522013000200006

Ohno T, Zibilske LM. Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Science Society of America Journal. 1991; v.55: 892-895, doi: 10.2136/sssaj1991.03615995005500030046x

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2016. [cited 2023 Mar 20] Available from: https://www.R-project.org/.

Singh B, Gilkes RJ. Properties and distribution of iron oxides and their association with minor elements in the soils of south-western Australia. Journal Soil Science. 1992; v.43: 77-98, doi: 10.1111/j.1365-2389.1992.tb00121.x

Schwertmann U, Kämpf N. Properties of goethite and hematite in kaolinitic soils of Southern and Cen-tral Brasil. Soil Science. 1985; v.139: 344-350, doi: 10.1097/00010694-198504000-00008

Teixeira PC, Donagemma GK, Fontana A, Teixeira WG. Embrapa - Empresa Brasileira de Pesquisa Agropecuária. Manual de Métodos de Análise de Solo. 3. ed. Brasília – DF: Embrapa Solos, 2017, p.573.

Toride N, Leij FJ, Van Genuchten MT,The CXTFIT code for estimating transport parameters from labo-ratory or field tracer experiments. Version 2.0, Research Report No. 137, U. S. Salinity Laboratory, USDA, ARS, Riverside, CA, 1995.

Van der Zee SEATM, Van Riemsdijk WH. Sorption kinetics and transport of phosphate in sandy soil. Geoderma. 1986; v.38: 293-309, doi: 10.1016/0016-7061(86)90022-4

Van Genuchten MT, Wierenga PJ. Solute dispersion coefficients and retardation factors. In: Black CA. Methods of soil analysis: Part 1 physical and mineralogical Methods, Madison (US): Wiley Online Library; 1986. p. 1025-1054. doi: 10.2136/sssabookser5.1.2ed.c44

Van Genuchten MT, Šimunek J, Leij FJ, Toride N, & Šejna M. STANMOD: Model use, calibration, and validation. Transactions of the ASABE. 2012; v. 55(4): 1355-1366.

Van Genuchten MT, Van Davidson JM, Wierenga PJ. An evaluation of kinetic and equilibrium equations for the prediction of pesticide movement through porous media. Soil Science Society of America Pro-ceedings. 1974; v.38: 29-35, doi: 10.2136/sssaj1974.03615995003800010016x

Vilela NMS, Thebaldi MS, Leal BP, Silva AV, Martins IP. Transport parameters of potassium from dif-ferent sources in soil columns. Engenharia Agrícola – Journal of the Brazilian Association of Agricul-tural Engineering. 2018; v.38(1): 135-141, doi: 10.1590/1809-4430-eng.agric.v38n1p135-141/2018




DOI: https://doi.org/10.22408/reva8020231468169-183

Métricas do artigo

Carregando Métricas ...

Metrics powered by PLOS ALM

Apontamentos

  • Não há apontamentos.




Flag Counter

Revista Valore 
ISSN: 2525-9008