APLICAÇÃO DE TECNOLOGIAS HABILITADORAS DE INDÚSTRIA 4.0 NA ÁREA DA SAÚDE - UMA REVISÃO SISTEMÁTICA

Autores/as

DOI:

https://doi.org/10.22408/reva602021561%25p

Resumen

Tecnologias de Indústria 4.0 tem sido empregadas no setor de saúde para agregar valor a seus processos e oferecer serviços de excelência, seguros a pacientes, trabalhadores, operações de saúde e gestão da qualidade. A ausência na literatura de estudo que tenha analisado a aplicação de Tecnologias de Indústria 4.0 em saúde foi a motivação deste artigo. O objetivo desta pesquisa foi identificar estudos sobre aplicações das Tecnologias Habilitadoras de Indústria 4.0 na área da saúde. O método utilizado foi revisão bibliométrica e sistemática de artigos sobre aplicações das Tecnologias Habilitadoras de Indústria 4.0 na área da saúde. O resultado da análise de 140 artigos indicou o uso de Tecnologias Habilitadoras de Indústria 4.0 em atividades de gerenciamento, análise, tratamento e compartilhamento de dados em saúde. A contribuição deste estudo consistiu em fornecer informações sobre os avanços de Tecnologias Habilitadoras de Indústria 4.0 no setor de saúde.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Glória de Fátima Pereira Venturini, Universidade Nove de Julho (UNINOVE)

Enfermeira, pós-graduada em Gestão da Qualidade e Administração Hospitalar. Mestrado em andamento no Programa de Pós-Graduação em Engenharia de Produção da Universidade Nove de Julho. Carreira consolidada na área de Gestão da Qualidade em instituições de saúde públicas e privadas.Experiência em implantação e manutenção das metodologias de acreditação ONA, Qmentum e Joint Commission International.

Luiz Fernando Rodrigues Pinto, Universidade Nove de Julho (UNINOVE)

Possui graduação em Engenharia de Produção pela Universidade Federal de Itajubá (2003), mestrado em Engenharia de Produção pela Universidade Nove de Julho (2016) e doutorado em Engenharia de Produção pela Universidade Nove de Julho (2019). É professor de mestrado e doutorado em Engenharia de Produção da Universidade Nove de Julho. Tem experiência na área de Engenharia de Produção, com pesquisas desenvolvidas nos seguintes temas: Sustentabilidade, Ecologia Industrial, Produção mais Limpa, Melhoria de Processos Operacionais, Economia Circular e Indústria 4.0.

Geraldo Cardoso de Oliveira Neto, Universidade Nove de Julho (UNINOVE)

Bolsista Produtividade em Pesquisa (PQ) nível 2, consultor Ad-hoc da Fundação de Amparo à Pesquisa do Estado de S. Paulo (FAPESP) e do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Pós Doutor pela Universidade de Aveiro em Portugal na área de Gestão e Engenharia Industrial (2018), Pós Doutor pela Universidade Federal de São Carlos (UFScar) em Engenharia de Produção (2015), Doutor em Engenharia da Produção (2012), Doutor em Administração de Empresas (2013), Mestre em Engenharia de Produção (2008), Especialista em Gestão da Qualidade e Produtividade (2006), Especialista em Gestão de Pessoas (2006) e Graduação em Administração de Empresas (2004). Atualmente é professor e pesquisador do Programa de Mestrado e Doutorado em Engenharia da Produção da Universidade Nove de Julho (UNINOVE) na Linha de Pesquisa sobre Gerência de Operações com foco nas Ferramentas de Ecoeficiência (avaliação econômica e ambiental), Sustentabilidade em Operações, Aspectos de Saúde e Segurança Ocupacional na adoção de Produção Mais Limpa, Inovação Tecnológica, Logística e Gestão da Cadeia de Suprimentos, Logística Reversa e Gestão de Resíduos, Estratégia em Operações e Revisões Bibliométricas e Análise de Conteúdos. Além de lecionar no curso deTecnologia em Logística da UNINOVE e realizar atividade consultiva em operações com foco em logística, gestão da cadeia de suprimentos e relações entre produção e meio ambiente.

Citas

ABDEL-BASSET, M., & MOHAMED, M. A novel and powerful framework based on neutrosophic sets to aid patients with cancer. Future Generation Computer Systems, v. 98, p. 144–153, 2019.

ABDELKARIM, A., HAGEMAN, A., LEVI, D. S., & ABOULHOSN, J. Operationalizing low-cost three-dimensional printing in planning for complex congenital cardiac interventions. Materials Today Communications, v. 15, p. 171–174, 2018.

ABDMEZIEM, M. R., & TANDJAOUI, D. An end-to-end secure key management protocol for e-health applications. Computers & Electrical Engineering, v. 44, p. 184–197, 2015.

ADAME, T., BEL, A., CARRERAS, A., MELIÀ-SEGUÍ, J., OLIVER, M., POUS, R. CUIDATS: An RFID–WSN hybrid monitoring system for smart health care environments. Future Generation Computer Systems, v. 78, p. 602–615, 2018.

AGHILI, S. F., MALA, H., KALIYAR, P., & CONTI, M. SECLAP: Secure and lightweight RFID authentication protocol for Medical IoT. Future Generation Computer Systems, v. 101, p. 621–634, 2019.

ALALI, A. B., GRIFFIN, M. F., CALONGE, W. M., BUTLER, P. E. Evaluating the Use of Cleft Lip and Palate 3D-Printed Models as a Teaching Aid. Journal of Surgical Education, v. 75, n. 1, p. 200–208, 2018.

ALHARBE, N., S. ATKINS, A. A study of the application of automatic healthcare tracking and monitoring system in Saudi Arabia. International Journal of Pervasive Computing and Communications, v. 10, n. 2, p. 183–195, 2014.

ALI, O., SHRESTHA, A., SOAR, J., WAMBA, S. F. Cloud computing-enabled healthcare opportunities, issues, and applications: A systematic review. International Journal of Information Management, v. 43, p. 146–158, 2018.

ALIFUI-SEGBAYA, F., BOWMAN, J., WHITE, A. R., VARMA, S., LIESCHKE, G. J., GEORGE, R. Toxicological assessment of additively manufactured methacrylates for medical devices in dentistry. Acta Biomaterialia, v. 78, p. 64–77, 2018.

AL-MAKHADMEH, Z., TOLBA, A. Utilizing IoT Wearable Medical Device for Heart Disease Prediction using Higher Order Boltzmann Model: A Classification Approach. Measurement, v. 147, 2019.

AL-SHAYEA, T. K., MAVROMOUSTAKIS, C. X., MONGAY BATALLA, J., MASTORAKIS, G. A. Hybridized Methodology of Different Wavelet Transformations Targeting Medical Images in IoT Infrastructure. Measurement, v. 148, 2019.

ANISETTI, M., ARDAGNA, C., BELLANDI, V., CREMONINI, M., FRATI, F., DAMIANI, E. Privacy-aware Big Data Analytics as a service for public health policies in smart cities. Sustainable Cities and Society, v. 39, p. 68–77, 2018.

AZIMI, I., PAHIKKALA, T., RAHMANI, A. M., NIELA-VILÉN, H., AXELIN, A., LILJEBERG, P. Missing data resilient decision-making for healthcare IoT through personalization: A case study on maternal health. Future Generation Computer Systems, v. 96, p. 297–308, 2019.

BAE, E.-J., JEONG, I.-D., KIM, W.-C., KIM, J.-H. A comparative study of additive and subtractive manufacturing for dental restorations. The Journal of Prosthetic Dentistry, v. 118, v. 2, p. 187–193, 2017.

BALDASSANO S. N. B., HILL C. E., SHANKAR A., BERNABEI J., KHANKHANIAN P., LITT B. Big data in status epilepticus. Epilepsy & Behavior, 2019.

BANCHHOR, S. K., LONDHE, N. D., ARAKI, T., SABA, L., RADEVA, P., KHANNA, N., & SURI, J. S. Calcium detection, its quantification, and grayscale morphology-based risk stratification using machine learning in multimodality big data coronary and carotid scans: A review. Computers in Biology and Medicine, v. 101, p. 184–198, 2018.

BARBA, D., ALABORT, E., REED, R. C. Synthetic Bone: Design by Additive Manufacturing. Acta Biomaterialia, v. 97 p. 637–656, 2019.

BARUI, S., PANDA, A. K., NASKAR, S., KUPPURAJ, R., BASU, S., BASU, B. 3D inkjet printing of biomaterials with strength reliability and cytocompatibility: Quantitative process strategy for Ti-6Al-4V. Biomaterials, v. 213, 2019.

BAUMEISTER, R. F., LEARY, M. R. Writing narrative literature reviews. Review of General Psychology, v. 1, 1997.

BEDARD N. A., PUGELY A. J., MCHUGH M. A., LUX N. R., BOZIC K. J., CALLAGHAN J. J. Big Data and Total Hip Arthroplasty: How Do Large Databases Compare?. The Journal of Arthroplasty, v. 33, p. 41-45, 2018.

BEGINES, B., HOOK, A. L., ALEXANDER, M. R., TUCK, C. J., WILDMAN, R. D. Development, printability and post-curing studies of formulations of materials resistant to microbial attachment for use in inkjet based 3D printing. Rapid Prototyping Journal, v. 22, n. 5, p. 835–841, 2016.

BHATIA, M., & SOOD, S. K. A comprehensive health assessment framework to facilitate IoT-assisted smart workouts: A predictive healthcare perspective. Computers in Industry, v. 92-93, p. 50–66, 2017.

BOBIN, M., BIMBARD, F., BOUKALLEL, M., ANASTASSOVA, M., & AMMI, M. SpECTRUM: Smart Ecosystem for stroke patient’s Upper limbs Monitoring. Smart Health, v. 13, 2019.

BOUSSADA, R., HAMDANE, B., ELHDHILI, M. E., SAIDANE, L. A. Privacy-preserving aware data transmission for IoT-based E-health. Computer Networks, v. 162, 2019.

BRODIE, M. A., PLINER, E. M., HO, A., LI, K., CHEN, Z., GANDEVIA, S. C., LORD, S. R. Big data vs accurate data in health research: Large-scale physical activity monitoring, smartphones, wearable devices and risk of unconscious bias. Medical Hypotheses, v. 119, p. 32–36, 2018.

BURTON, H. E., PEEL, S., EGGBEER, D. Reporting fidelity in the literature for computer aided design and additive manufacture of implants and guides. Additive Manufacturing, v. 23, p. 362–373, 2018.

CARNEY T.J., KONG A.Y. Leveraging health informatics to foster a smart systems response to health disparities and health equity challenges. Journal of Biomedical Informatics, v. 68, p. 184–189, 2017.

CHEN, L., TANG, W., JOHN, N. W., WAN, T. R., ZHANG, J. J. SLAM-based dense surface reconstruction in monocular Minimally Invasive Surgery and its application to Augmented Reality. Computer Methods and Programs in Biomedicine, v. 158, p. 135–146, 2018.

CHEN, Y., CRESPI, N., ORTIZ, A. M., & SHU, L. Reality mining: A prediction algorithm for disease dynamics based on mobile big data. Information Sciences, v. 379, p. 82–93, 2017.

CHOW, J. C. L. Internet-based computer technology on radiotherapy. Reports of Practical Oncology & Radiotherapy, v. 22, n. 6, p. 455-462, 2017.

CHUNG, C.-J., KUO, Y.-C., HSIEH, Y.-Y., LI, T.-C., LIN, C.-C., LIANG, W.-M., LIN, H.C. Subject-enabled analytics model on measurement statistics in health risk expert system for public health informatics. International Journal of Medical Informatics, v. 107, p. 18–29, 2017.

COELHO A. W. F., THIRÉ R. M. S. M., ARAUJO A.C. Manufacturing of gypsum–sisal fiber composites using binder jetting. Additive Manufacturing, v. 29, 2019.

COOPER, H.M. AND LINDSAY, J.L. Research synthesis and meta-analysis. In: L. Beckman, D.J.R. (Eds), Handbook of applied social research methods. Thousand Oaks, 1998.

COTE, V., SCHWARTZ, M., ARBOUIN VARGAS, J. F., CANFAROTTA, M., KAVANAGH, K. R., HAMDAN, U., VALDEZ, T. A. 3-Dimensional printed haptic simulation model to teach incomplete cleft palate surgery in an international setting. International Journal of Pediatric Otorhinolaryngology, v. 113, p. 292–297, 2018.

DAVIS, J., MENGERSEN, K., BENNETT, S., MAZEROLLE, L. Viewing systematic reviews and meta-analysis in social research through different lenses. SpringerPlus, v. 3, p. 511, 2014.

DAVIS, M. C., CAN, D. D., PINDRIK, J., ROCQUE, B. G., JOHNSTON, J. M. Virtual Interactive Presence in Global Surgical Education: International Collaboration Through Augmented Reality. World Neurosurgery, v. 86, p. 103–111, 2016.

DIMITRIADIS, S. I., TARNANAS, I., WIEDERHOLD, M., WIEDERHOLD, B., TSOLAKI, M., FLEISCH, E. Mnemonic strategy training of the elderly at risk for dementia enhances integration of information processing via cross-frequency coupling. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, v. 2, n. 4, p. 241–249, 2016.

DOURADO JR, C. M. J. M., DA SILVA, S. P. P., DA NÓBREGA, R. V. M., DA S. BARROS, A. C., FILHO, P. P. R., DE ALBUQUERQUE, V. H. C. Deep learning IoT system for online stroke detection in skull computed tomography images. Computer Networks, v. 152, p. 25–39, 2019.

DRITSA, D., & BILORIA, N. Towards a multi-scalar framework for smart healthcare. Smart and Sustainable Built Environment, v. 7, n. 1, p. 33–52, 2018.

EISSA, A., ZOEIR A., SIGHINOLFI M. A., PULIATTI S., BEVILACQUA L., DEL PRETE C., BERTONI L., AZZONI P., BONETTI L. R., MICALI S., BIANCHI G., ROCCO B. “Real-time” Assessment of Surgical Margins during Radical Prostatectomy: State-ofthe-Art. Clinical Genitourinary Cancer, 2019.

ELHOSENY, M., ABDELAZIZ, A., SALAMA, A. S., RIAD, A. M., MUHAMMAD, K., SANGAIAH, A. K. A hybrid model of Internet of Things and cloud computing to manage big data in health services applications. Future Generation Computer Systems, v. 86, p. 1383–1394, 2018.

ESCALADA-HERNÁNDEZ, P., RUIZ, N. S. Design and evaluation of a prototype of augmented reality applied to medical devices. International Journal of Medical Informatics, v. 128, p. 87–92, 2019.

FISCHER, G. S., RIGHI, R. DA R., RAMOS, G. DE O., COSTA, C. A. DA, RODRIGUES, J. J. P. C. ElHealth: Using Internet of Things and data prediction for elastic management of human resources in smart hospitals. Engineering Applications of Artificial Intelligence, v. 87, 2019.

FORKAN, A. R. M., KHALIL, I., ATIQUZZAMAN, M. ViSiBiD: A learning model for early discovery and real-time prediction of severe clinical events using vital signs as big data. Computer Networks, v. 113, p. 244–257, 2017.

FORKAN, A. R. M., KHALIL, I., TARI, Z., FOUFOU, S., BOURAS, A. A context-aware approach for long-term behavioural change detection and abnormality prediction in ambient assisted living. Pattern Recognition, v. 48, n. 3, p. 628–641, 2015.

GODFREY, A., HETHERINGTON, V., SHUM, H., BONATO, P., LOVELL, N. H., STUART, S. From A to Z: Wearable technology explained. Maturitas, v. 113, p. 40–47, 2018.

GOLDSHTEIN, I., CHODICK, G., KOCHBA, I., GAL, N., WEBB, M., SHIBOLET O. Nonalcoholic Fatty Liver Identification and Characterization Using Big Data. Clinical Gastroenterology and Hepatology, 2019.

GOLI-MALEKABADI, Z., SARGOLZAEI-JAVAN, M., AKBARI, M. K. An effective model for store and retrieve big health data in cloud computing. Computer Methods and Programs in Biomedicine, v. 132, p. 75–82, 2016.

HADIAN, M., ALTUWAIYAN, T., LIANG, X., LI, W. Privacy-preserving voice-based search over mHealth data. Smart Health, v. 12, p. 24–34, 2019.

HASAN, M. Z., MAHDI, M. S. R., SADAT, M. N., MOHAMMED, N. Secure count query on encrypted genomic data. Journal of Biomedical Informatics, v. 81, p. 41-52, 2018.

HIDEMASA TAKAO. H., AMEMIYA S., SHIBATA E., OHTOMO K. 3D Printing of Preoperative Simulation Models of a Splenic Artery Aneurysm: Precision and Accuracy. Technical Report Academic Radiology, v. 24, p. 650–653, 2017.

HOSSAIN, M. S., MUHAMMAD, G. Cloud-assisted Industrial Internet of Things (IIoT) – Enabled framework for health monitoring. Computer Networks, v. 101, p. 192–202, 2016.

HROVAT, G., STIGLIC, G., KOKOL, P., OJSTERŠEK, M. Contrasting temporal trend discovery for large healthcare databases. Computer Methods and Programs in Biomedicine, v. 113, n. 1, p. 251–257, 2014.

HSIEH, P.-J. Healthcare professionals use of health clouds: Integrating technology acceptance and status quo bias perspectives. International Journal of Medical Informatics, v. 84, n. 7, p. 512–523, 2015.

HUANG, T., LAN, L., FANG, X., AN, P., MIN, J., & WANG, F. Promises and Challenges of Big Data Computing in Health Sciences. Big Data Research, v. 2, n. 1, p. 2–11, 2015.

HUANG, T.-K., YANG, C.-H., HSIEH, Y.-H., WANG, J.-C., HUNG, C.-C. Augmented reality (AR) and virtual reality (VR) applied in dentistry. The Kaohsiung Journal of Medical Sciences, v. 34, n. 4, p. 243–248, 2018.

ISTEPHAN, S., SIADAT, M. R. Unstructured medical image query using big data – An epilepsy case study. Journal of Biomedical Informatics, v. 59, p. 218–226, 2016.

JOHNSON, A. C., ETHUN, C. G., LIU, Y., LOPEZ-AGUIAR, A. G., TRAN, T. B., POULTSIDES, G., MAITHEL, S. K. Studying a Rare Disease Using Multi-Institutional Research Collaborations vs Big Data: Where Lies the Truth? Journal of the American College of Surgeons, 2018.

KAKAVAS, G., Malliaropoulos, N., Pruna, R., Maffulli, N. Artificial Intelligence A tool for sports trauma prediction. Injury. 2019.

KIM, S., LEE, H., CHUNG, Y. D. Privacy-preserving data cube for electronic medical records: An experimental evaluation. International Journal of Medical Informatics, v. 97, p. 33–42, 2017.

KOLOSSVÁRY, M., DE CECCO, C. N., FEUCHTNER, G., MAUROVICH-HORVAT, P. Advanced atherosclerosis imaging by CT: Radiomics, machine learning and deep learning. Journal of Cardiovascular Computed Tomography, 2019.

KORETSUNE, Y., YAMASHITA, T., YASAKA, M., ODA, E., MATSUBAYASHI, D., OTA, K., YAMAGUCHI, T. Usefulness of a healthcare database for epidemiological research in atrial fibrillation. Journal of Cardiology, v. 70, n. 2, p.169–179, 2017.

KREMPIEN, R., HOPPE, H., KAHRS, L., DAEUBER, S., SCHORR, O., EGGERS, G., HARMS, W. Projector-Based Augmented Reality for Intuitive Intraoperative Guidance in Image-Guided 3D Interstitial Brachytherapy. International Journal of Radiation Oncology Biology Physics, v. 70, n. 3, p. 944–952, 2008.

KUGELMANN, D., STRATMANN, L., NÜHLEN, N., BORK, F., HOFFMANN, S., SAMARBARKSH, G., WASCHKE, J. An Augmented Reality magic mirror as additive teaching device for gross anatomy. Annals of Anatomy, v. 215, p. 71–77, 2018.

KUMAR, M.A., VIMALA, R., BRITTO, K R.A. A cognitive technology based healthcare monitoring system and medical data transmission. Measurement, v. 146, p. 322–332, 2019.

LEBLANC, F., SENAGORE, A. J., ELLIS, C. N., CHAMPAGNE, B. J., AUGESTAD, K. M., NEARY, P. C., DELANEY, C. P. Hand-Assisted Laparoscopic Sigmoid Colectomy Skills Acquisition: Augmented Reality Simulator Versus Human Cadaver Training Models. Journal of Surgical Education, v. 67, n. 4, p. 200–204, 2010.

LEIGHTLEY, D., CHUI, Z., JONES, M., LANDAU, S., MCCRONE, P., HAYES, R. D., GOODWIN, L. Integrating electronic healthcare records of armed forces personnel: Developing a framework for evaluating health outcomes in England, Scotland and Wales. International Journal of Medical Informatics, v. 113, p. 17–25, 2018.

LI, S., YU, C.-H., WANG, Y., BABU, Y. Exploring adverse drug reactions of diabetes medicine using social media analytics and interactive visualizations. International Journal of Information Management, v. 48, p. 228–237, 2019.

XU, L.D., XU, E.L., LI, L. Industry 4.0: state of the art and future trends. International Journal of Production Research, v. 56, n. 8, p. 2941-2962, 2018.

LIBRENZA-GARCIA, D., KOTZIAN, B. J., YANG, J., MWANGI, B., CAO, B., PEREIRA LIMA, L. N., PASSOS, I. C. The impact of machine learning techniques in the study of bipolar disorder: A systematic review. Neuroscience & Biobehavioral Reviews, v. 80, p. 538–554, 2017.

LIN, C.-W., ABDUL, S. S., CLINCIU, D. L., SCHOLL, J., JIN, X., LU, H., LI, Y.-C. Empowering village doctors and enhancing rural healthcare using cloud computing in a rural area of mainland China. Computer Methods and Programs in Biomedicine, v. 113, n. 2, p. 585–592, 2014.

LOMOTEY, R. K., PRY, J., Sriramoju, S. Wearable IoT data stream traceability in a distributed health information system. Pervasive and Mobile Computing, v. 40, p. 692–707, 2017.

LONG, J., YUAN, M. J. A novel clinical decision support algorithm for constructing complete medication histories. Computer Methods and Programs in Biomedicine, v. 145, p. 127–133, 2017.

LYNCH, C. M., ABDOLLAHI, B., FUQUA, J. D., DE CARLO, A. R., BARTHOLOMAI, J. A., BALGEMANN, R. N., FRIEBOES, H. B. Prediction of lung cancer patient survival via supervised machine learning classification techniques. International Journal of Medical Informatics, v. 108, p. 1–8, 2017.

MAHMUD, S., IQBAL, R., DOCTOR, F. Cloud enabled data analytics and visualization framework for health-shocks prediction. Future Generation Computer Systems, v. 65, p. 169–181, 2016.

MANOGARAN, G., VARATHARAJAN, R., LOPEZ, D., KUMAR, P. M., SUNDARASEKAR, R., THOTA, C. A new architecture of Internet of Things and big data ecosystem for secured smart healthcare monitoring and alerting system. Future Generation Computer Systems, v. 82, p. 375–387, 2018.

MASOOD, A., SHENG, B., LI, P., HOU, X., WEI, X., QIN, J., FENG, D. Computer-Assisted Decision Support System in Pulmonary Cancer detection and stage classification on CT images. Journal of Biomedical Informatics, v. 79, 2018.

MAVROGIORGOU, A. Analyzing data and data sources towards a unified approach for ensuring end-to-end data and data sources quality in healthcare 4.0. Computer Methods and Programs in Biomedicine, 2019.

MEN, K., ZHANG, T., CHEN, X., CHEN, B., TANG, Y., WANG, S., DAI, J. Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning. Physica Medica, v. 50, p. 13–19, 2018.

MENG, W., LI, W., WANG, Y., AU, M. H. Detecting insider attacks in medical cyber–physical networks based on behavioral profiling. Future Generation Computer Systems, 2018.

MIAH, S. J., HASAN, J., GAMMACK, J. G. On-Cloud Healthcare Clinic: An e-health consultancy approach for remote communities in a developing country. Telematics and Informatics, v. 34, n. 1, p. 311–322, 2017.

MIERONKOSKI, R., AZIMI, I., RAHMANI, A. M., AANTAA, R., TERÄVÄ, V., LILJEBERG, P., SALANTERÄ, S. The Internet of Things for basic nursing care - A scoping review. International Journal of Nursing Studies, v. 69, p. 78–90, 2017.

MIRANDA-VEGA J. E., FLORES-FUENTES, W., SERGIYENKO O., RIVAS-LÓPEZ M., LINDNER L., RODRÍGUEZ-QUIÑONEZ J.C., HERNÁNDEZ-BALBUENA D. Optical cyber-physical system embedded on an FPGA for 3D measurement in structural health monitoring tasks. Microprocessors and Microsystems, v. 56, p. 121–133, 2018

MOGLIA A., FERRARI V., MORELLI L., FERRARI M., MOSCA F., CUSCHIERI A. A Systematic Review of Virtual Reality Simulators for Robot-assisted Surgery. European Urology, v. 69, p. 1065-1080, 2016.

MOHER, D., LIBERATI, A., TETZLAFF, J., ALTMAN, D. G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal Medicine ,v. 151, p. 264–269, 2009.

MOREIRA, M. W. L., RODRIGUES, J. J. P. C., KUMAR, N., AL-MUHTADI, J., KOROTAEV, V. Evolutionary radial basis function network for gestational diabetes data analytics. Journal of Computational Science, v. 27, p. 410–417, 2018.

MUNIR, K., DE RAMÓN-FERNÁNDEZ, A., IQBAL, S., JAVAID, N. Neuroscience patient identification using big data and fuzzy logic–An Alzheimer’s disease case study. Expert Systems with Applications, v. 136, p. 410–425, 2019.

MURPHY D. R., MEYER, A. N. D., VAGHANI, V., RUSSO, E., SITTIG D.F., WEI L., WU, L., SINGH H. Electronic Triggers to Identify Delays in Follow-Up of Mammography: Harnessing the Power of Big Data in Health Care. American Board of Radiology, v. 15, p. 287-295, 2018.

MUSYOKA, F. M., THIGA, M. M., MUKETHA, G. M. A 24-hour ambulatory blood pressure monitoring system for preeclampsia management in antenatal care. Informatics in Medicine Unlocked, v. 16, 2019.

NICOLAU, S. A., PENNEC, X., SOLER, L., BUY, X., GANGI, A., AYACHE, N., MARESCAUX, J. An augmented reality system for liver thermal ablation: Design and evaluation on clinical cases. Medical Image Analysis, v. 13, n. 3, p. 494–506, 2009.

NILASHI, M., IBRAHIM, O., SAMAD, S., AHMADI, H., SHAHMORADI, L., AKBARI, E. An Analytical Method for Measuring the Parkinson’s Disease Progression: A Case on a Parkinson’s Telemonitoring Dataset. Measurement, v. 136, 2019.

O’MALLEY, F. L., MILLWARD, H., EGGBEER, D., WILLIAMS, R., COOPER, R. The use of adenosine triphosphate bioluminescence for assessing the cleanliness of additive-manufacturing materials used in medical applications. Additive Manufacturing, v. 9, p. 25-29, 2016.

OH K. C., PARK J-M., SHIM J-S., KIM J-H, KIM J-E., KIM J-H. Assessment of metal sleeve-free 3D-printed implant surgical guides. Dental Materials, v. 35, p. 468–476, 2019.

OLIVEIRA NETO, G. C. DE, PINTO, L. F. R., AMORIM, M. P. C., GIANNETTI, B. F., & ALMEIDA, C. M. V. B. A framework of actions for strong sustainability. Journal of Cleaner Production, v. 196, p. 1629–1643, 2018.

OUBEL, E., BONNARD, E., SUEOKA-ARAGANE, N., KOBAYASHI, N., CHARBONNIER, C., YAMAMICHI, J., KIMURA, S. Volume-based Response Evaluation with Consensual Lesion Selection. Academic Radiology, v. 22, n. 2, p. 217–225, 2015.

PACCHINI, A. P. T., LUCATO, W. C., FACCHINI, F., & MUMMOLO, G. The degree of readiness for the implementation of Industry 4.0. Computers in Industry, v. 113, 2019.

PANDEY, S., VOORSLUYS, W., NIU, S., KHANDOKER, A., BUYYA, R. An autonomic cloud environment for hosting ECG data analysis services. Future Generation Computer Systems, v. 28, n. 1, p. 147–154, 2012.

PARK, J. H., KIM, S., PARK, J.-W., KO, S.-J., LEE, S. Feasibility study of structured diagnosis methods for functional dyspepsia in Korean medicine clinics. Integrative Medicine Research, v. 6, n. 4, p. 443–451, 2017.

PARTHASARATHY, J., STARLY, B., RAMAN, S. A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications. Journal of Manufacturing Processes, v. 13, n. 2, p. 160–170, 2011.

PASCHOU, M., SAKKOPOULOS, E., SOURLA, E., TSAKALIDIS, A. Health Internet of Things: Metrics and methods for efficient data transfer. Simulation Modelling Practice and Theory, v. 34, p. 186–199, 2013.

PASHAZADEH A., NAVIMIPOUR N. J. Big data handling mechanisms in the healthcare applications: A comprehensive and systematic literature review. Journal of Biomedical Informatics, v. 82, p. 47–62, 2018.

PASSOS, I. C., MWANGI, B., CAO, B., HAMILTON, J. E., WU, M.-J., ZHANG, X. Y., SOARES, J. C. Identifying a clinical signature of suicidality among patients with mood disorders: A pilot study using a machine learning approach. Journal of Affective Disorders, v. 193, p.109–116, 2016.

PFANDLER, M., LAZAROVICI, M., STEFAN, P., WUCHERER, P., WEIGL, M. Virtual reality-based simulators for spine surgery: a systematic review. The Spine Journal, v. 17, n. 9, p. 1352–1363, 2017.

PRAMANIK, M. I., LAU, R. Y. K., DEMIRKAN, H., AZAD, M. A. K. Smart health: Big data enabled health paradigm within smart cities. Expert Systems with Applications, v. 87, p. 370–383, 2017.

QUINN, P., QUINN, L. Big genetic data and its big data protection challenges. Computer Law & Security Review, v. 34, p. 1000–1018, 2018.

RAMKUMAR, P. N., HAEBERLE, H. S., BLOOMFIELD, M., SCHAFFER, J. L., KAMATH, A. F., PATTERSON, B. M., KREBS, V. E. Artificial Intelligence and Arthroplasty at a Single Institution: Real-World Applications of Machine Learning to Big Data, Value-Based Care, Mobile Health, and Remote Patient Monitoring. Journal of Arthroplasty, v. 34, 2019.

REXIT, R., TSUI, F., ESPINO, J., CHRYSANTHIS, P. K., WESARATCHAKIT, S., YE, Y. An analytics appliance for identifying (near) optimal over-the-counter medicine products as health indicators for influenza surveillance. Information Systems, v. 48, p. 151–163, 2015.

RIBEIRO, A. L. P., PAIXÃO, G. M. M., GOMES, P. R., RIBEIRO, M. H., RIBEIRO, A. H., CANAZART, J. A., MACFARLANE, P. W. Tele-electrocardiography and bigdata: The CODE (Clinical Outcomes in Digital Electrocardiography) study. Journal of Electrocardiology, 2019.

RICHTER, A. N., KHOSHGOFTAAR, T. M. Efficient learning from big data for cancer risk modeling: A case study with melanoma. Computers in Biology and Medicine, v. 110, p. 29–39, 2019.

ROSE, K., & PEDOWITZ, R. Fundamental Arthroscopic Skill Differentiation With Virtual Reality Simulation. Arthroscopy. The Journal of Arthroscopic & Related Surgery, v. 31, n. 2, p. 299–305, 2015.

RUTLEDGE R. B., CHEKROUD A.M., QUENTIN J.M. HuysMachine learning and big data in psychiatry: toward clinical applications. Current Opinion in Neurobiology, v. 55, p. 152–159, 2019.

SANTOS, D. F. S., ALMEIDA, H. O., PERKUSICH, A. A personal connected health system for the Internet of Things based on the Constrained Application Protocol. Computers & Electrical Engineering, v. 44, p. 122–136, 2015.

SCHWARZER, E., HOLTZHAUSEN, S., SCHEITHAUER, U., ORTMANN, C., OBERBACH, T., MORITZ, T., & MICHAELIS, A. Process development for additive manufacturing of functionally graded alumina toughened zirconia components intended for medical implant application. Journal of the European Ceramic Society, v. 39, p. 522–530, 2018.

SEDDON, J. J. M., CURRIE, W. L. Cloud computing and trans-border health data: Unpacking U.S. and EU healthcare regulation and compliance. Health Policy and Technology, v. 2, n. 4, p. 229–241, 2013.

SEGURA-BEDMAR, I., COLÓN-RUÍZ, C., TEJEDOR-ALONSO, M. Á., MORO-MORO, M. Predicting of anaphylaxis in big data EMR by exploring machine learning approaches. Journal of Biomedical Informatics, v. 87, p. 50–59, 2018.

SERHANI, M. A., MENSHAWY, M. E., BENHARREF, A., HAROUS, S., & NAVAZ, A. N. New algorithms for processing time-series big EEG data within mobile health monitoring systems. Computer Methods and Programs in Biomedicine, v. 149, p. 79–94, 2017.

SIMPAO, A. F., AHUMADA, L. M., REHMAN, M. A. Big data and visual analytics in anaesthesia and health care. British Journal of Anaesthesia, v. 115, n. 3, p. 350–356, 2015.

SINGH, D., HARDING, A. J., ALBADAWI, E., BOISSONADE, F. M., HAYCOCK, J. W., CLAEYSSENS, F. Additive manufactured biodegradable poly(glycerol sebacate methacrylate) nerve guidance conduits. Acta Biomaterialia, v. 78, p. 48–63, 2018.

SIVATHANU, B. Adoption of internet of things (IOT) based wearables for elderly healthcare – a behavioural reasoning theory (BRT) approach. Journal of Enabling Technologies, v. 12, n. 4, p. 169-185, 2018.

SMITH, D., KAPOOR, Y., HERMANS, A., NOFSINGER, R., KESISOGLOU, F., GUSTAFSON, T., PROCOPIO, A. 3D Printed Capsules for Quantitative Regional Absorption Studies in the GI Tract. International Journal of Pharmaceutics, v. 550, p. 418–428, 2018.

SUKUMAR, S. R., NATARAJAN, R., FERRELL, R. K. Quality of Big Data in health care. International Journal of Health Care Quality Assurance, v. 28, n. 6, p. 621–634, 2015.

SUN, W., ZHENG, B., QIAN, W. Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis. Computers in Biology and Medicine, v. 89, p. 530–539, 2017.

TAM, C. H., CHAN, Y. C., LAW, Y., CHENG, S. W. The Role of Three-Dimensional Printing in Contemporary Vascular & Endovascular Surgery A systematic review. Annals of Vascular Surgery, v. 53, p. 243–254, 2018.

TANG, R., MA, L.-F., RONG, Z.-X., LI, M.-D., ZENG, J.-P., WANG, X.-D., DONG, J.-H. Augmented reality technology for preoperative planning and intraoperative navigation during hepatobiliary surgery: A review of current methods. Hepatobiliary & Pancreatic Diseases International, v. 17, n. 2, p. 101–112, 2018.

TANG, V., CHOY, K., HO, G., LAM, H., TSANG, Y. An IoMT-based geriatric care management system for achieving smart health in nursing homes. Industrial Management & Data Systems, v. 119, n. 8, p. 1819-1840, 2019.

TEBER, D., GUVEN, S., SIMPFENDÖRFER, T., BAUMHAUER, M., GÜVEN, E. O., YENCILEK, F., RASSWEILER, J. Augmented Reality: A New Tool To Improve Surgical Accuracy during Laparoscopic Partial Nephrectomy? Preliminary In Vitro and In Vivo Results. European Urology, v. 56, n. 2, p. 332–338, 2009.

TIAN, S., YANG, W., GRANGE, J. M. L., WANG, P., HUANG, W., YE, Z. Smart healthcare: making medical care more intelligent. Global Health Journal, 2019.

VAN EIJNATTEN, M., VAN DIJK, R., DOBBE, J., STREEKSTRA, G., KOIVISTO, J., & WOLFF, J. CT image segmentation methods for bone used in medical additive manufacturing. Medical Engineering & Physics, v. 51, p. 6–16, 2018.

VIJAYAKUMAR, V., MALATHI, D., SUBRAMANIYASWAMY, V., SARAVANAN, P., LOGESH, R. Fog Computing-based Intelligent Healthcare System for the Detection and Prevention of Mosquito-borne Diseases. Computers in Human Behavior, v. 100, p. 275–285, 2018.

VIKAL, S., U-THAINUAL, P., CARRINO, J. A., IORDACHITA, I., FISCHER, G. S., FICHTINGER, G. Perk Station—Percutaneous surgery training and performance measurement platform. Comp. Med. Imaging and Graphics, v. 34, n. 1, p. 19–32, 2010.

VILELA, P. H., RODRIGUES, J. J. P. C., SOLIC, P., SALEEM, K., FURTADO, V. Performance evaluation of a Fog-assisted IoT solution for e-Health applications. Future Generation Computer Systems, v. 97, p. 379–386, 2019.

VIVEKANANDAN, T., SRIMAN NARAYANA IYENGAR, N. C. Optimal feature selection using a modified differential evolution algorithm and its effectiveness for prediction of heart disease. Computers in Biology and Medicine, v. 90, p. 125–136, 2017.

WANG, H., LIM, J. Y. Metal-ceramic bond strength of a cobalt chromium alloy for dental prosthetic restorations with a porous structure using metal 3D printing. Computers in Biology and Medicine, v. 112, 2019.

WANG, J., SUENAGA, H., LIAO, H., HOSHI, K., YANG, L., KOBAYASHI, E., SAKUMA, I. Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation. Computerized Medical Imaging and Graphics, v. 40, p. 147–159, 2015.

WANG, S.-L., CHEN, Y. L., KUO, A. M.-H., CHEN, H.-M., SHIU, Y. S. Design and evaluation of a cloud-based Mobile Health Information Recommendation system on wireless sensor networks. Computers & Electrical Engineering, v. 49, p. 221–235, 2016.

WAUTHLE, R., VAN DER STOK, J., AMIN YAVARI, S., VAN HUMBEECK, J., KRUTH, J.-P., ZADPOOR, A. A., SCHROOTEN, J. Additively manufactured porous tantalum implants. Acta Biomaterialia, v. 14, p. 217–225, 2015.

WONG, B., HO, G. T. S., TSUI, E. Development of an intelligent e-healthcare system for the domestic care industry. Industrial Management & Data Systems, v. 117, n. 7, p. 1426–1445, 2017.

WU Q., ZENG Z., LIN J., CHEN Y. AI empowered context-aware smart system for medication adherence. International Journal of Crowd Science, v. 1, n. 2, p. 102-109, 2017.

XIA, H., ASIF, I., ZHAO, X. Cloud-ECG for real time ECG monitoring and analysis. Computer Methods and Programs in Biomedicine, v. 110, n. 3, p. 253–259, 2013.

XIA, T., SONG, X., ZHANG, H., SONG, X., KANASUGI, H., SHIBASAKI, R. Measuring spatio-temporal accessibility to emergency medical services through big GPS data. Health & Place, v. 56, p. 53–62, 2019.

YACCHIREMA, D., SARABIA-JÁCOME, D., PALAU, C. E., ESTEVE, M. System for monitoring and supporting the treatment of sleep apnea using IoT and big data. Pervasive and Mobile Computing, v. 50, p. 25-40 2018.

YANG, J.-J., LI, J.-Q., NIU, Y. A hybrid solution for privacy preserving medical data sharing in the cloud environment. Future Generation Computer Systems, v. 43-44, p. 74–86, 2015.

YAO, J.-J., ZHANG, F., GAO, T.-S., ZHANG, W.-J., LAWRENCE, W. R., ZHU, B.-T., SUN, Y. Survival impact of radiotherapy interruption in nasopharyngeal carcinoma in the intensity-modulated radiotherapy era: A big-data intelligence platform-based analysis. Radiotherapy and Oncology, v. 132, p. 178–187, 2018.

YE, H., LIU, J., WANG, W., LI, P., LI, T., LI, J. Secure and efficient outsourcing differential privacy data release scheme in Cyber-physical system. Future Generation Computer Systems, 2018.

YUE, J. C., WANG, H.-C., LEONG, Y.-Y., SU, W.-P. Using Taiwan National Health Insurance Database to model cancer incidence and mortality rates. Insurance: Mathematics and Economics, v. 78, p. 316–324, 2018.

ZHANG C., ZHU L., XU C, LU R. PPDP: An efficient and privacy-preserving disease prediction scheme in cloud-based e-Healthcare system. Future Generation Computer Systems, v. 79, p. 16–25, 2018.

ZHANG, X. Z., LEARY, M., TANG, H. P., SONG, T., QIAN, M. Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: Current status and outstanding challenges. Current Opinion in Solid State and Materials Science, v. 22, n. 3, p. 75–99, 2018.

Publicado

2021-07-26

Cómo citar

Venturini, G. de F. P., Pinto, L. F. R., & de Oliveira Neto, G. C. (2021). APLICAÇÃO DE TECNOLOGIAS HABILITADORAS DE INDÚSTRIA 4.0 NA ÁREA DA SAÚDE - UMA REVISÃO SISTEMÁTICA. Revista Valore, 6, e-6015. https://doi.org/10.22408/reva602021561%p

Número

Sección

Fluxo Contínuo (Art. Originais/Revisão)